skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chiu, Alvin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Felsner, Stefan; Klein, Karsten (Ed.)
    We investigate force-directed graph drawing techniques under the constraint that some nodes must be anchored to stay within a given polygonal region associated with it (i.e. some positional information is known). The low energy layouts produced by such algorithms may reveal geographic information about nodes with no such knowledge a priori. Some applications of graph drawing with partial positional information include location-based social networks and rail networks, where the geographical locations need not be precise. 
    more » « less
  2. Graph neural networks have been successful for machine learning, as well as for combinatorial and graph problems such as the Subgraph Isomorphism Problem and the Traveling Salesman Problem. We describe an approach for computing graph sparsifiers by combining a graph neural network and Monte Carlo Tree Search. We first train a graph neural network that takes as input a partial solution and proposes a new node to be added as output. This neural network is then used in a Monte Carlo search to compute a sparsifier. The proposed method consistently outperforms several standard approximation algorithms on different types of graphs and often finds the optimal solution. 
    more » « less
  3. null (Ed.)